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Abstract. The half-filled Hubbard model is studied in the pair approximation of the cluster 
variation method (CVM). The use of the SO(4) symmetry of the model makes it possible to give 
a complete analytical characterization of the ground state, by means of explicit expressions for 
the double occupancy and the nearest-neighbour correlation functions. The finite-temperature 
analysis is reduced to the numerical solution of only two coupled mcenden ta l  equations. The 
behaviour of local magnetic mbment, specific heat and correlation functions is given for Some 
typical cases in one and two dimensions. We obtain good qualitative agreement with exact and 
numerical results in one dimension The results for finite temperatures show a rapid evolution, 
with increasing temperature, h m  a strongly antiferromagnetic behaviour to a disordered one; in 
the high-temperature region a maximum (which has teen related to a ‘gradual’ metal-insulator 
msi t ion)  is found in the specific heat for very large values of the Coulomb repulsion. 

1. Introduction 

The Hubbard model [1,2] is the simplest model of itinerant electrons which takes into 
account the interaction between electrons. It was originally proposed to describe the 
behaviour of d-electrons in transition metals, and i t  is expected to describe the metal- 
insulator (Mott) transition. In recent years, interest in this model has been greatly revived 
by the discovery of high-T, superconductors, since these materials arcgenerally good MotI 
insulators and, in the superconducting phase, exhibit strong aritiferromagnetic correlations, 
just like the half-filled Hubbard model at low temperatures. 

The model is defined by the following grand-canonical Hamiltonian: 

t where U, t > 0 and a;, , a,, and ni, are, respectively, annihilation, creation and number 
operators for electrons at site i with spin U E [+, -1. The first term represents the Coulomb 
repulsion between electrons at the same site (all other interactions are neglected); the second 
term is the chemical potential, and the third one is the kinetic term, which describes hopping 
of the electrons between sites, with the sum restricted to non-oriented nearest-neighbour (NN) 
pairs. 

The Hubbard model  has^ been studied by many different techniques (for reviews see 
13.41 and references therein) but an exact solution is available only in oneaimension 15.61, 
while in two dimensions or more there are only a few exact results in very particularcases. 
For U / t  = 0 the model describes a system of non-interacting, moving electrons and is 
exactly solvable in any dimension. On the other side, for U / t  = 00 (atomic limit) and at 
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half filling (i.e. (ni) = (ni+ + ni-) = 1) the ground state is that of an antiferromagnetic 
insulator [7], with exactly one electron per site. At half filling two other very important 
rigorous results hold 
(i) the chemical potential is given by p = U/2 for any value of U / t  and at any temperature 
[81, and 
(ii) Hamiltonian (1) has, for p =~U/2, an SO(4) symmetry [9], 

In this paper we investigate the D-dimensional Hubbard model at half filling in the pair 
approximation of the cluster variation method (CVM). The CVM was originally introduced 
by Kikuchi [ 101 and its convergence in the thermodynamic limit has been demonstrated by 
Schlijper [l I]. Recently the method has been given a very elegant formulation by An [121, 
in terms of Mobius inversion. The simplest level of approximation in the CVM is the site 
approximation, which is equivalent to the ordinary mean-field theory; then we have the pair 
approximation, which can be shown to be equivalent to the Bethe approximation. 

The pair approximation of the CVM has already been applied to the Hubbard model in 
f13-161. Unfortunately, in these references only the U ( 1 )  @ U(1) Cartan subgroup of the 
SO(4) symmetry group later studied by Yang and B a n g  was used, and the authors had 
to deal with large sets of coupled transcendental equations, which they could solve only 
for relatively high temperatures (kT/t t 1, with k Boltzmann’s constant and T absolute 
temperature). Furthermore, in [I4161 equivalence is assumed between sites belonging to 
the two interpenetrating sublattices which form a bipartite lattice. 

In this paper we apply the pair approximation of the CVM to the Hubbard model on a 
bipartite lattice (that is, a lattice which is made of two interpenetrating sublattices, say A and 
B, in such a way that a site belonging to sublattice A has all its nearest neighbours in the E 
sublattice and vice versa: examples are the ID chain, HC, SQ, SC and BCC lattices) by taking 
into account the full SO(4) symmetry of the model. Furthermore, the equivalence between 
the two sublattices is not assumed, but it is derived from the thermodynamics of the model. 
The ground state is determined analytically, i.e. explicit expressions are derived for the 
double occupancy and the NN correlation functions at T = 0, for any number of dimensions 
and any value of the interaction U / t .  For the finite temperature case, the problem is reduced 
to the numerical solution of two coupled transcendental equations. Such equations can be 
solved at any temperature and in the limit T + 0 the ground-state solution is recovered. 

The validity of the approximation is first checked by comparing the behaviour of the 
zero-temperature local magnetic moment versus U / t  in D = 1 with the exact solution for 
the infinite chain reported by Hirsch [17], and then by comparing the same quantity at finite 
temperature for typical values of U / t  with the numerical results for finite chains obtained 
by Shiba and Pincus [18]. Once the validity of the method has been established, we report 
on the numerical results at finite temperature for D 1: correlation functions, hopping 
expectations and specific heat are given in some typical case, and the antiferromagnetic 
behaviour of the system as well as the inhibition of certain hopping processes at low 
temperatures are discussed. Finally, it is noticed that a high-temperature maximum appears 
in the specific heat for v e j  large values of the interaction, in agreement with previous 
studies where this maximum was related to a gradual metal-insulator transition. 

The paper is organized as follows: in section 2 we construct the trial free energy 
according to the pair approximation of the CVM, taking into account the symmetry of 
the Hamiltonian. In section 3 the ground state is obtained and discussed, and the zero- 
temperature local magnetic moment is compared with the exact result for the infinite chain. 
In section 4 the analysis is extended to finite temperature and the behaviour of various 
physical quantities is given and discussed and, finally, in section 5 some conclusions are 
drawn. 
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2. Free energy 

Following A n ’ s  formulation [12], the CVM trial free energy for a bipartite lattice in the pair 
approximation can be written as 

where E is the internal energy, N is the number of lattice sites, and PA,  ps and p p  are 
the reduced density matrices (to be determined by minimizing f )  for a site belonging to 
sublattice A ,  a site belonging to sublattice E and a pair of nearest neighbours, respectively. 

Before taking the variation o f f  with respect to the reduced density matrices, let us 
determine which constraints for such density matrices can be derived from the symmetry 
group of the Hamiltonian. As shown in [9] ,  Hamiltonian (I), with p =~ U/Z because of 
the half-filling condition, commutes with a SO(4) = SU(2) C3 SU(2) /& group, where one 
SU(2) (referred to as the magnetic one) is generated by 

the other S U ( 2 )  (called the pairing, or superconductive one), which is relevant only at 
half-filling, by 

(the phase factor e’@t is f l  for sites in sublattice A and -1 for sites in sublattice B )  and 
Zz interchanges the two SU(2)  symmetries. The presence or absence of this symmetry in 
the quantum state of the system characterizes the different phases: a disordered phase will 
be invariant under the whole SO (4) symmetry group, while a phase with magnetic and/or 
superconductive order will be invariant under a reduced symmetry group, with both SU(2) 
(or one) spontaneously broken down. Since in this paper we are concemed with the half- 
filled case, and it is conjectured that at half-filling the Hubbard model does not undergo any 
phase transition, we devote our attention to the disordered phase, thus assuming the whole 
SO(4) symmetry (in view of the good agreement with exact results in one dimension, this 
assumption should be correct also at zero temperature). The possibility of a phase transition, 
associated with a spontaneous breaking of the magnetic SU(2) symmetry group, will be 
examined in a forthcoming paper [I91 for the extended Hubbard model at general filling. 

In order to impose the commutation relations between the reduced density matrices and 
the SO(4) generators defined above, we introduce in the site and pair reduced Fock spaces 
the customary basis of eigenstates of the number operators. In such a basis, requiring that 
the reduced density matrices commute with the Cartan operators J, and K,, pa and p~ 
tum out to be diagonal, while for p, one obtains the same block structure as in [16], with 
only 36 non-zero elements. By imposing furthermore the commutation with J+ and K+ 
(or, equivalently, with their hermitian conjugates J- and K-), one finds that p,, ( y  = A ,  B )  
has two distinct eigenvalues, say d,, and - d,,, each with multiplicity 2, whereas p p  is a 
block diagonal matrix with 

(i) two eigenvalues A ,  and l.2, each with multiplicity 2; 
(ii) four degenerate 2 x 2 blocks, which give rise to two eigenvalues l.3 and l.4 with 

multiplicity 4; 
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(iii) a 4 x 4 block with eigenvalues hl, hz, 25 and h.6. 
Summarizing, we have six different eigenvalues, hl and A2 with multiplicity ml = mz = 

3, h3 and 1 4  with multiplicity m3 = m4 = 4, and 1 5  and with multiplicity m5 = m6 = 1. 
Of these, only five are independent, because of the normalization condition Tr(pp) = 1. 

Recalling that the expectation value of an operator X is given by (X) = Tr@X), one 
can compute, with some simple algebra, the expectation values of all the site and NN pair 
operators. The non-zero expectation values turn out to be (i and j nearest neighbours, i E A 
and j E 8 )  

for the diagonal operators (notice that in this scheme the half-filling condition is derived 
from the symmetry and not imposed), and 

p E (u;+u~-uj-aj+) = 4 - cp - c, 

p' (a! I -  at ,+ ai+aj-) = c, - cp 

_ -  ro = (u!"uj*fli-mnj-r) = (uit,nj,(l -ni-<)(l - f l j - J  
2 

= - h4)z - a(da - d# 

2 2 - = (a! I -  u .  I" (1 -n;-,,)nj-,,) = (a!,ujcni-,,(l -nj-g)) 

= +d(h5 - h6)' - [ 2 ( d ~  + ds) - 1 - 3(hl - hz)]' 

(together with the obvious Hermitian conjugates) for the non-diagonal operators. 
The free energy per site, as a function of dA, ds and hi, i = 1, . . .6, is then 

U 
2 

f = -(dA 4- ds - 1) - 2ZLJ(h3 - A4)' - +(dA - da)' 

- ~ t J ( h 5  - h# - [2(dA + ds) - 1 - 3(h1 - hz)]' 
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3. The ground state 

At T = 0, the free energy~per site is but the internal. energy, and is given by 

U - (da + ds - 1) - 2zt 
2 f (A3 - A4)' - a(dA - ds)' 

The ground state can thus be obtained by minimizing f with respect to the d,, and the hi. 
Since we are looking for an absolute minimum and our variables are subject to constraints 
(the eigenvalues of the density matrices, as well as the arguments of the square roots in (8) 
must be non-negative, and pp must be properly normalized), we should search our minimum 
possibly 2 the domain boundary of the constrained variables, and not only in the interior. 

Indeed, the minimum is found for 

As = 1 and hi =0, i #5. 
The ground state is thus described by 

The configuration of a pair of nearest neighbours in the ground s@te can be derived 
as the eigenvector of p,  corresponding to the eigenvalue A5 = 1. One obtains, up to a 
normalization constant, 

It is worth noticing that such a configurationis the superposition of an antiferromagnetic 
singlet pair (equivalent to that used by Anderson [20] in the construction of his RVB state) 
with a fraction of doubly occupied sites. The concentration of doubly occupied sites as 
well as the kinetic energy (the expectation value of the hopping term) vanish for large U 
and have their maximum for U = 0. The NN correlations are strictly antiferromagnetic (i.e., 
cp = 0), as expected, and no phase transition is found in any number of dimensions. Some 
hopping processes, e.g. the hopping of an electron from a doubly occupied to a singly 
occupied site, or from a singly occupied to  an^ empty site, tum out to be inhibited in the 
ground state. 
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In order to check the validity of our approximation, we compare the local magnetic 
moment at T = 0 versus U / t  for the ID chain (z = 2) with the exact result reported in 
[18]. The local magnetic moment S is proportional to the expectation value of the square 
of the magnetization 

(12) s = 3 T((ni+  - n i y )  

and is directly related to the double occupancy, since 

Equation (13) is exact bo& in the non-interacting case (7.4 = 0, S = i) and in the atomic 
limit (U = CO, S = t). Figure 1 shows the comparison between our results for z = 2 (solid 
line) and the exact solution for the ID chain (circles). The agreement is within 10% for all 
values of U l t .  ::m 0.6 

. ,  
“0.55 

0.5 

0.45 

0.4 

0 2 4 6 8 10 12 l6 Figure 1. Local magnetic moment at T = 0. Our result 
U/t (solid line) and result from [IV (circles). 

4. Finite temperature 

Since we have found dA = dB = d in the ground state, and the entropy contribution favours 
this latter condition, one can expect this symmetry relation to hold even at finite temperature. 
Furthermore, a breaking of such symmetry at finite temperature would yield it re-entrant 
phase with staggered double occupancy, and there is no indication of such phases in the 
Hubbard model. Indeed, we have checked numerically that the minima o f f  always appear 
for da = ds = d .  We shall therefore assume from now on the latter relation. 

In this way we obtain a free energy which is a function of six independent variables 
only: d and five of the Ai. Instead of minimizing f directly, we introduce the following 
new set of independent variables: 
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and we &fine R56 = 1 - Rlz - R3+ After rewriting f ,  as given by (2). in terms of the 
above variables, the minimum- f requirement gives (assuming, with no loss of generality, 
1 3  > W 

Upon defining x = r12-6, and after some algebra, three of the above equations can be solved 
for r34, RI2, R34 and S (or rI2). leaving us with the following two coupled transcendental 
equations for x aid r56: 

Once (16) has been solved, the remaining variables are given by the following relations: 

rlz = -6R sinh j3- ( 3 
ru = 8Rsinhp 

R34 =~8Rcoshp. 

As a check for the whole procedure, we compare in figure 2 our results for the local 
magnetic moment for z = 2 and some typical values-of U / t  with the exact (numerical) 
results obtained by Shiba and Pincus [18] for a six-sites chain with periodic boundary 
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Figure 2. Local magnetic momenl at finite temperalure 
for U l t  = 8 (upper curves) and U / I  = 4 (lower 
curves). Solid lines are OUF results, circles are from 
[W. 

Figure 3. Local magnetic moment at finite temPWre 
for U l t  = 8 (upper curves) and U l t  = 4 (lower 
curves). Dashed lines are for the linear chain and solid 
lines for the square lattice. 

conditions. We find good qualitative agreement, and again differences are contained within 
10%. It can be observed that the solution for low temperatures converges to the value 
predicted by the ground-state analysis. The results for the chain are compared witb those 
for the square lattice ( L  = 4) in figure 3: our analysis shows, as expected from numerical 
simulation [17]. that the local moment increases with increasing U / t  and with decreasing 
dimensionality. 

In figure 4 we report the correlation functions cp (lower curves) and c, (upper curves), 
in figure 5 the hopping contributions to (lower curves) and rl (upper curves), in figure 6 
the 'double hoppings' p (lower curves) and p' (upper curves) and in figure 7 the specific 
heat, for l J / r  = 8 (solid lines) and U / t  = 4 (dashed lines) for a square lattice. 

O.? 

0.15 

0.1 
0.05 

kTlr 

05 .,*,., ,, 

0.35 

0.3 

-0.25 

O.? 
0.L5 

0.1 

0.05 

'0 0.5 I 1.5 2 2.5 3 3.5 4 
kTlc 

Figure 4. Correlation functions cp (lower curves) and 
c, (upper curves) on the square lattice for U J I  = 8 
(solid lines) and UJI = 4 (dashed lines). 

Figures. Hoppingexpectation values rn (lowercurves) 
and zI (upper curves) on the square lattice for UJz = 8 
(solid lines) and U/I =4. 

Of course there is no evidence of a true phase transition (the specific heat exhibits 
a maximum, but not a sharp peak), but we can clearly distinguish a low-temperature 
behaviour ( k T / t  < 0.5) from a high-temperature one ( k T / t  1). The Low-temperature 
region is characterized by strong antiferromagnetic correlations and by a relatively large 
kinetic energy associated with the moving electrons, due almost entirely to double hoppings 
and to hopping processes from doubly occupied to empty sites and vice versa, while the 
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0.35 

0.15 

‘0 0.5 I 1.5 2 2.5 3 3.5 4 
KTh 

Figure 6. Double hoppings p (lower curves) and p’ 
(upper curves) on the square lattice for Uft = 8 (solid 
lines) and U/[ = 4 (dashed lines). 

Figure 7. Specific heat on the square lanice for U / t  = 
8 (solid lines) and Ulr  = 4. 

remaining processes are strongly inhibited because of ‘the ground-state configuration. The 
high-temperature region, besides, looks like a true disordered phase, with almost equally 
distributed correlations (cp zz c, zz $) and low kinetic energy. Furthermore in this region, 
as already noticed in [16], for very large values of the interaction U / t  a spread maximum 
appears in the specific heat, which was related by Ho and Barry to a ‘gradual’ metal-insulator 
transition. 

5. Conclusions 

We have investigated the half-filled Hubbard model in the pair approximation of the cluster 
variation method, making use of the full SO(4) symmetry of the.mode1. We have given 
an analytical description of the ground state, by means of the double occupancy and of 
the NN correlation functions and, for finite temperature, we have derived a pair of coupled 
transcendental equations. Numerical solution shows two different behaviours, connected by 
a smooth but rapid change in the values of the parameters. The low-temperature behaviour 
is strongly antiferromagnetic and exhibits the inhibition of certain hopping processes, while 
a large kinetic energy is associated with the others. In the high-temperature region we find a 
quite disordered behaviour, with a spread maximum, which was related to a metal-insulator 
transition, for very large values of the interaction. Good agreement is found with exact and 
numerical results in one dimension. 
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